سينتيك رسوب الكتروليتى نيكل ازكميلكس انبوتيل آمين

TBABF $_{4}$-در حلال Tروماتيك آنيسول_ـفنانترون

سيد خطيب الاسلام صدر نزاد"' ــافروز برنوش「

1 ـ استاد دانسُكده ههندسى و علم مواد، دانتشكاه صنعنى شريف.
Y ـ فارغالنحصبل كارشناسى ارشد دانشُكده مهندسى و علم مواد، دانتـكاه صنعنى شريف.

* sadrnezh@sharif.edu

كلبد وازگان: سبنتبك، تبلبر، آروماتيك، نبكل، الكتروليز، آنبسول، ننانترن.

حــلـ شــده در الكــتروليت TBABFF

I ـ 1

مى يردازد.

 مجاورت يونهاى فعال ديگر است. ضريب دى الكتريك باي إين در حلالهاى آرومـاتيك (D (D (1]، بـرخــلاف حـلالهاى آلى

رسرب الكتروليتى فلزات واسطه همجون نيكل، مس و تيتانيور

 از اهميت فراوانى برخور ردار است. در عين حال تحقيقات درخور تـوجهى دربـارة رســوب الكـتروليتى ايـن نـلزات از حــالالهاى
 بررسى الكتروكريستاليزاسيون نيكل از كمِلكس انبوتيل آمين

و بلى آروماتيكى تعيين مىشود. اطلاعات سينتيكى مربوط بـه
 الكتروشيميايى ارائه شده در تحقيقات قـبلى مـحاسبه و بـــاى استفادههاى بعدى اعلام مىشود.

r-

 مارك فلوكا) در آنيسول (با خلوص بيش از 99 در صــد مـارى

 تترافلوئوروبرات، TABABF
 رسوب الكتروليتى نيكل در حلالهاى آروماتيكى و بلى آَروماتيكى
 حلاليت كلر يد در محلو لهاى كمیلكسساز و پايهه به وجود آمد و تشكيل نشدن فاز ثالث عملاً تأييد شد.

آزمــــايشهاى ولتــامترى چــرخـــهاى، كـــرنو آمثرمترى و بينابنگارى امپدانس الكتروشيميايى با استفاده از يك دستگاه پتانسيواستات / گالوانواستات مدل EG\&G YVrA و آناليزگر
 رابطه بين سيستمهاى پتانسيواستات و آناليزگر پاسـخ فركانس با با

IEEE_ヶ^1
 جرخهاى لااقل ب بار تكرار شد. نتايج به دست آمده تا حد هـ هو در

1. Donor
2. Intel
3. International Instrument

دونور ' مثل دىمتيل فرماميد و دىمتيل سولفواكسـيد، سـبب هدايت الكتريكى بسيار ضعيف و مصون ماندن حلال از تشكيل كمیلكس با يون فلز واسطه مىشود. لذا محيطى نسبتاً ايـدئال براى رسوبدادن الكتريكى فلزات واسطه بـه وجــرد مــــآورد. علت استفاده نكردن از الكتروليتهاى آبى، احياى آب و و تصاعد هيدروزن است كه باعث اتلاف انرزُى و تنزل كيفيت فلز به سبـ جذب هيدروزن مىشود [Y] . براى تغيير بتانسيل احيا و ضريب

فلزى مىتوان بهره گرفت [٪|].

تحقيقات شيفرين [† [نشان داده است كه انحلال الكتروليت
 باعث افزايش ابعاد مولكولى الكتروليت و ايجاد تجمعات يونى بزرگ با قطبس موضعى مى شود. در اين صورت با جهش يون ايون از تجمعات باردار به سمت تجمعات غيرباردار هدايت الكتريكى لازم، حلاليت قابل قـبول و كسـترهٔ دمـاى كـارى بـالا حـاصـلا مىشود [ه، ${ }^{\text {[]. }}$
محققان قبلى نشان دادهاند كـه انـتخاب الكـتروليت مـناسب مانند نمكهاى تتراالكيل آمونيوم با طول زنجيره: آلكيل بيتتر از r r،
 الكتريكى مىشود [V]. انحلال يون فلز با استفاده از يكى ليگاند آبران مناسب تا حد r مول بر ليتر، در اين محيطها، قابل دستيابى
 نفوذ و ثوابت سرعت احياى ناشناختهانى دارند كه بـرأى كـنتول دقيت جنس رسوب، نوع كمیلكس بايد شناسايى و تعيين شود.
 آمده در حين انحلال Ni
 فرايند تشكيل رسوب الكتريكى نـيكل مـوجود در الكـتروليت حل شـده در حلال بِايه آَنيسول به اضافه فنانترن، از طريق مقايسه دادههاى تجربى با مـحاسبات تــؤوى و مـقادير
 Ni ${ }^{\text {T+ }}$

وجود دو تله متواللى در ولتـاكـرامـهاى ســيستم دلالت بـر

اول طى واكنُ دوم مصرف شوند:
$\mathrm{Ni}^{+{ }^{+}}{ }_{\text {(Complex) }}+\overline{\mathrm{e}} \rightarrow \mathrm{Ni}^{+}{ }_{\text {(Complex) }}$
$\mathrm{Ni}^{+}{ }_{\text {(Complex) }}+\overline{\mathrm{e}} \rightarrow \mathrm{Ni}_{\text {(Complex) }}$
 تشكيل رسوب به صورت واكنش بكا بامل مى بشود:
$\mathrm{Ni}_{\text {(Complex) }} \rightarrow \mathrm{Ni}$
نمودار تغيير چتانسيل قله بر حسب لگاريتم سرعت روبش در در

 برگثتنانايذيرى واكنش ممردد نظر است. سومين آزم
 ختانسيل مربوط به نصف جريان قله (سرعت روبش است [9]. نتايج 'ين آزمون برايى هر دو كاتد آتد مسى و تِاتينى در جدول r خلاصه شُده است
 واكنش و ضريب انتقال الكترون نـيز بـا استـفاده از الطـلاعات الـات

 $\mathrm{I}_{\mathrm{p}}=-\left(\Gamma / 99 \times 10^{0}\right) \mathrm{n}\left(\alpha_{\mathrm{c}} n_{\alpha}\right)^{1 / r} \mathrm{c}_{0}^{\infty} \mathrm{D}^{1 / r} \mathrm{v}^{1 / r}(\uparrow)$ كه در آن n تعداد الكترونهاى منتقل شده در مرحله تعيين كننده v ،mol/cmr سرعت،

[^0]2. Working Electrode
3. Transfer coefficient

نمودار هاى به دست آمده، در اين مقاله ارائه مىشوند در دBABF ${ }_{\mu} \cdot / \Delta M$ در مـحلول Ag/AgBF
 مرجع استفاده شد [^]. ـتانسيل اين الكترود دنسبت به به الكترود

 سيم :لاتين بود كه قبل از هر آزمايش با اسيد نيتر يكى ها 10 مولار

 مخزن آب سرد، كندانسور بيركس سه لايه و شلنغهاى ارتباطى

 از انزايش فشار داخلح سلول جلوكيرى شده، ثانياً تغيير غـلظت

 الكترونى روبشى و آناليزگر WDX مـورد مـطالعـ و تـجزيه و

تحليل قرار گرفت.

「 ـ

 تأثير سرعت روبش بر چچگالى جريان و ولتاز منطقن كاندى در

 ارتفاع و چتانسيل هر دو قله به ترتيب افزايس و و كاهشُ يافته، با با تغيير جنس كاتد از مس به بِلاتين نيز ارتفاع و بتانـسيل قله دوم انزايش و كاهش مىيابد.

$\alpha_{\mathrm{c}^{\mathrm{n}}{ }_{\alpha}}$	R^{+}	b	a	(${ }^{\circ} \mathrm{C}$) los	كاند
- /IIrrv	./94Ar	-./49^9	-./rokt	vo	Cu
./.v	-/99^¢	-./4941	-./9r	1%	Pt

(الف)

SQRT (S.R)

(ب)

شكل " . $1 \mathrm{H}_{0}^{\circ} \mathrm{C}$

(الف)								
$\begin{aligned} & 1.0^{r} k^{0} \\ & (\mathrm{~cm} / \mathrm{sec}) \end{aligned}$	$\begin{gathered} 10^{G} \mathrm{D} \\ \left(\mathrm{~cm}^{r} / \mathrm{sec}\right) \end{gathered}$	$\alpha_{c} n_{\alpha}$	$\left\|\mathbf{E}_{\mathbf{P}}-\mathbf{E}_{\mathbf{P} / \mathbf{Y}}\right\|$ (V)	S.R. ($\mathrm{V} / \mathrm{sec}$)	$\mathbf{E}_{\mathrm{P} / \mathrm{Y}}$ (V)	$\mathbf{E}_{\mathbf{P}}$ (V)	$\begin{gathered} \mathbf{I}_{\mathbf{P}} \\ (\mathrm{mA}) \end{gathered}$	$\stackrel{\mathbf{i}}{\mathbf{P}}_{\left(\mathrm{m} / \mathrm{cm}^{\mathrm{r}}\right)}$
1	r / r	- /19	./4	- /r	-o/ $/$ Vr	-I/YYY	- /oveg	r/aoror
$1 / 1$	r / r	. /1v	- /r	- /r	-./AFg	-1/IVIO	-/4ara	r/Yolkr
$1 / r$	$r / 1$./19	-/r	. 110	-/Ar	- $/ 1 / 14$	-/4ry	Y/11.01A
1/4	r/A	./1A	- /r	.1 .0	-./AlH	$-1 / 111$	-/Y^9	1/4.019

(ب)

$\begin{aligned} & 1.0^{r} k^{\circ} \\ & (\mathrm{cm} / \mathrm{sec}) \end{aligned}$	$\begin{aligned} & 10^{f} \mathrm{D} \\ & \left(\mathrm{~cm}^{r} / \mathrm{sec}\right) \end{aligned}$	$\alpha_{c}{ }^{n}{ }_{\alpha}$	$\left\|\mathbf{E}_{\mathbf{P}}-\mathbf{E}_{\mathbf{P} / \mathbf{Y}}\right\|$ (V)	S.R. ($\mathrm{V} / \mathrm{sec}$)	$\mathbf{E}_{\mathbf{P} / \mathrm{Y}}$ (V)	$\mathbf{E}_{\mathbf{P}}$ (V)	$\underset{(\mathrm{mA})}{\mathbf{I}_{\mathbf{P}}}$	$\underset{\left(\mathrm{mA} / \mathrm{cm}^{Y}\right)}{\mathbf{i}_{\mathbf{P}}}$
$0 / 4$	IY	. $1 . \mathrm{V}$	- / $\wedge V$	-10	$-1 / 4 r$	$-r / r$	1/0A9	Ir/801s
$0 / 8$	Ir	-101	- / Arq	-140	$-1 / 4 r v$	$-\mathrm{Y} / \mathrm{YVG}$	y/00r	ir/rosy
$0 / \mathrm{V}$	Ir	. $/ 01$	-/Arr	-1/	$-1 / 40 \mathrm{~V}$	-r/ry	1/4As	W/artr
¢	IT	\%/0^	- / 1 -0	-170	$-1 / 491$	-r/ror	1/4F1	11/4vra
$\mathrm{v} / \mathrm{\wedge}$	$1 \wedge$. 1.9	- /VrA	.$/ 10$	-1/Y4A	-1/ava	1/19Y	9/Y0109

مرا كز رشُد بر زمينه تشكيل مىشود و تأثير متقابل ميدانهاى نفوذ،
 مى توان آن را ناديده كرفت. در جنين شرايطى تغييرات جريان بـانـا
 مراكز رشد مستقيهأ با ضرب جريان مربو مرط بـ بر رشد يك مركز مجزا در جاكالى محلهاى جواننزنى .N. ـدر حالت جوانهزنى لحظهاى

[^1] دما قابل محاسبه است.

 استاندارد واكنش تشُيليل رسوب نيز با توجه به روابط ريش بينهادي

 مركز مجزا به دست آوردند. البته، در حالت كلى تعداد زيـادى از

 مورد استفاده براى مساسبات يحور انفى، ثانبه استـ.

متفاوت در شكل 9 رسم شدهاند. تبعيت سيستم از جوانـهنـنى

 منحنى نظرى مىشود.
 بعدى و جواننزنى لحظهاى و تحت كنترل نغوذ در حالت حدى

$$
\begin{equation*}
\text { - } \mathrm{Nt} \rightarrow 0 \tag{v}
\end{equation*}
$$

با استفاده از رابطة فوق و ضرايب ركرسيون خطط، مىتيون N.

1. Normalize

اين دادهها از روش بيشنهادى جاريفكر [9] براى جوانهن بعدى و تحت كتترل نفوذ استفادر شد.

 جاريفكر به دست آورده، با استفاده از مقادير جريان مان ماكزيمم، lm

$\frac{I^{Y}}{I_{m}^{Y}}=\frac{1 / 9 \Delta F Y}{1 / t_{m}}\left[1-\exp \left[-1 / r \Delta \& F\left(t / t_{m}\right)\right]\right]^{r}$
$\frac{I^{r}}{I_{m}^{r}}=\frac{1 / r r \Delta Y}{t / t_{m}}\left[1-\exp \left[-r / \operatorname{Trcv}\left(t / t_{m}\right)^{r}\right]\right]^{r}(\varepsilon)$
معادلههاى ها و 9 در ارتباط با جو اننزنى سـ بعدى لحظهاى
 دست آمده از آزمايشهاى كرونو آمبرومترى با بللهاى بـتانسيل

(د)
(』)

$10^{5} \mathrm{~N} .\left(\mathrm{cm}^{r}\right)$	R^{r}	a	$\mathrm{E}(\mathrm{V})$
Ir	-/940r	90/9V1	$-r / \Delta$
Ir	-/994^	94/014	-r
$9 / v$	-/9arr	fr/OAT	$-r / 0$
N/1	-/999^1	ra/art	-r
H/r	. 149.4	ro/avi	-1/ve
r / r	-/9ast	1./84 4	$-1 / 0$

زلنوذ يونهاى فلز در لايه نرنست در الكتروليت است. دياكرام سـبعدى امپدانس حقيقى ZRe، امیِدانس موهومى ^ نشان داده شدهاند. همان طور كه ديده مى شمود، نتيجه آزمايشهاى (نقاط *) با امیدانس مدار معادل شبيهسازى شـــه (خـط ممتد)، تطبيت نسبتاً خربى دارد. در فركانسهاى بالا(MHz الا (100 KHz

 مربوط به فـرايـند فـعال شــدن سـطع الكـترود در حــين تـبلور اللكتروشيميايى (L) ديده مىشود. با كاهش بيشتر فـركانس در محدوده: KHz 100 Hz ـ 1 مجدداً يكى حلقهُ خازنى مربوط به جذب ليگاندهاى يون نيكلى بـر سـطع كـاتد (CPE r) و در فركانسهاى پايينتو حلقهُ خـازنى سـوم مـربوط بــه ليگـاندهاى

 [[[[آزمــايشهاى بـينابنگارى امــدانس الكـتروشيميايى در دو رتانسيل 0/ه - و ^/ه ـ ـ ولت صورت گرفت تا اطلاعات بيشترى در ارتباط با سازوكار فرايند به دست آيد. مدار معادل با بررسى سيستمهاى مشابه و نتايج اين تحقيق با استفاده از روش حداقل كردن غير خطى مـربع دادههـاى كـمـيلكس CNLS و نـرم|فـزار [lf]LEVM V/\ الكتريكى بيشنهادى در شكل V نشان داده شده است. در اين مدار (نمايانگ, مقاومت مـحلون، 1 R دوگانه، R Y مقاومت انتقالل بار، L مربوط به جدا شدن ليگاند باقيمانده از رسوب يون نيكل روى الكترود، CPE r در ارتباط با جذب يون نيكل به صورت كمیلكس در سطح كاتد و W ناشى

. / شمهار: بنجم / فنى و مهندسى مدرّس •

(ب)

(الف)
علامت" و محاسبه شُده با خطوط ممتد نشان داده شـدهاند.

$1 .{ }^{r} \chi^{r}$	CPEr		Ro (Ω)	CPEY		RF (Ω)	$1 .{ }^{17} \mathrm{~L}$ (H)	R r (Ω)	CPE)		Rr (Ω)	R) (Ω)	E (V)
	\square	$1.0^{9} \sigma$ (F)		n	$7.0^{5} \sigma$ (F)				n	$1 .{ }^{4} \sigma$ (F)			
- /ay	-/asv	11/110	Arr/A	$\cdot 10 \cdot \wedge$	Solgar	Ylso/V	V/arv	vos	-/V44r	Vo/ary	r19/A	Frr/A	-./0
-/0vr	-/vve	rr/ira	ors/a	-1009	90/ory	1AD/V	4/440	not	- /arvo	ro/ry	lav	+9y/I	-. $/ 1$

الكتروشيميايى سه بعدى نيكل بر سطح الكترودهاى مسـى و
 تبلوريافته را نشان ميدهد. همحنين آناليز WDX انجام شده هر دو نوع بوشش، خلوص بسيار بالاى آنها را نشان مىدهد كه

جذب شــده روى سـطح (CPE (C) مشـاهده مـىكردد. مـقادير
 الكتريكى سيستم مـــطالعات مــيكروسكوب الكــترونى روبشـــى، تــبلور

[4] Geblewicz G. and D. J. Schiffrin; "Solvent Properties of Polyaromatic Hydocarbons", J. Chem. Sco. Farady Trans. I; 1988; Vol. 84, pp. 561-574.
[5] Abbott, A. P. and D. J. Schiffrin; "Enhanced Solvent Properties of Aromatic Hydrocarbon Mixture", J. Electroanal. Chem.; 1988; Vol. 256, pp. 477-480.
[6] Abbott, A.P. and D.J. Schiffrin; " Conductivity of Tetra-Alkylammonium Salts in Polyaromatic Solvents", J. Chem. Sco. Farady Trans; (1990); Vol. 86, pp. 1453-1459.
[7] Abbott, A.P. and D.J. Schiffrin; "Characterisation of Solvent Propertics of Aromatic Hydrocarbon Mixtures", J. Chem. Sco. Farady Truns.; (1990); Vol. 86, No. 9, pp. 1449-1452.
[8] Abbott, A.P. E.E. Long, A. Bettley and D.J. Schiffrin; " Metal Deposition from Aromatic Solvents", J. Electroanal. Chem.; 1989; Vol. 261, pp. 449-453.
[9] Scharifker, B.R.; "Difftsion Controlled Growth of Hemispheres in Ordered Arrays", J. Electroanal Chem.; 1998; Vol. 458, pp. 253-255.
[10] Bard, A.J.; "Electrochemical Methods; John Wiely, NY.; 1980.
[11] Gosser, D.K.; "Cyclic Voltametry Simu. and Anal. of Reac. Mechanism", VCH Pub., NY; 1994.
[12] Heerman, L. and A. Tarallo; "Electrochemical Nucleation on Microelectrodes Therory and Exper. for Diff. Controled Growth", J. Electroanal. Chem.; 1998; Vol. 451, pp. 101-109.
[13] Avrami, M.; "Theory of Extended Area ", J. Chem. Phys.; 1939; Vol. 7, pp. 1130-1137.
[14] Macdonald., J.R.; "CNLS (Complex Nonlinear Least Squares) Immittance Fitting Program, LEVM Manual"; Solarton Group Limited.; 1999.
[15] Macdonald, J.R., J. Schoonman and A.P. Lehnen; "The Applicability and Power of Complex Nonlinear Least Squares for the Analysis of Impedance and Admittance Data," Electroanal. Chem.; 1982; Vol. 131, pp. 77-95.

مؤيد نتيجه كيرى ذيل است.

S
تبلور الكتروشيميايى نيكل بر سطح مس و پلاتين به صورت سه بعدى است و سرعت جوانهزنى فلز تحت تأثير پتانسيل اضانى اعمالى افزايش يافته و به يكـ مقدار حدى مىرسد. جو انعزنى در اين حلال به صورت لحظهاى بوده و رشد تـحت كـنترل نـفوذ است. با كذشت زمان و تداخل همرفت طـبيعى در سـيستم بـا فرايند نفوذ، انحرافاتى از كنترل نـفوذى مـلاحظه مـيشرد. امـا مقايسهٌ نتايج حاصل از اندازهـكيرى امــدانس الكـتروشيميايى
 مىدهد. تطابق خوب دادههاى آزمايشى با نمو دارهاى محاسبه شده امیدانس موهومى ـ امیدانس حقيقى ـ لگـاريتم فـركانس، نشاندهندةُدقت مدار معادل طراحى شده و تناسب تو جيه انجام شده دربار؛ رفتار سينتيك سيستم است.

هـ ــلدردانی
از حوزه معاونت برّوهشى دانشخاه صـنعتى شــريف بـه سـبـب
 خوردگى و حفاظت مواد آن دانشگاه به سبب همكارى در انجام
دادن آزمايشها قدردانى مىششود.

[1] Abbott, A.P., T.A. Claxton, J. Fawcett and J.C. Harper; "Tetrakis (Decyl) Ammonium Tetraphenyl Borate: A Novel Electrolyte for Nonpolar Media" J. Chem. Sco. Farady Trans.; 1996; Vol. 92, No. 10, pp. 1747-1749.
[2] Geblewicz, G., R.J. Potter, and D. J. Schiffrin; "Electrodeposition from Aromatic Solvents", Trans. IMF.; 1986; Vol. 64, pp. 134-136.
[3] Potter, R. J. and D. J. Schiffrin; "Electrodeposition from Thiocyanates Melts", J. Electroanal Chem.; 1989; Vol. 206, pp. 253-264.

[^0]: 1. Counter Electrode
[^1]: 1. Nucleation Sites Density
