## تأثير ميزان خمشدكى بر خواص بست حافظهدار براى اتصال استخوان



دانشگاه صنعتى شريف-1
Yانشگاه صنعتى اميركبير
دانشگاه تهران -r
دانشگاه آزاد اسلامى واحد علوم و تحقيقات-ع

# Effect of Bending on Shape Memory Staple for Joining Bone 

Dr. S.K.Sadrnezhaad ${ }^{1}$, Dr.S.T.Naimi ${ }^{2}$, Dr. S.M.Fathi ${ }^{3}$, Eng.N.Hassanzadeh Nemati ${ }^{4}$<br>1-Sharif University of Technology<br>2- Amirkabir University of Technology<br>3- Tehran University<br>4- Azad University, Researches and Sciences Unit







 'بـرسسى قـرار گــرفته است.
كلمات كليلىى: حافظهدار، بست، نايتينول، استحاله،آستنيت، مازتنزيت، خمشدگى


#### Abstract

Shape memory staples made of nickel - titanium alloy are designed so that the surgical physician can implant its legs like a hook across the fractured bone to fix the broken parts together. The alloy returns to its original shape after being heated by passage of an electric current or usage of a warm saline pad. The changing of its crystal structure (martensite to austenite) results in bending of the staple legs exerting a compressive force to both pieces of the broken bone to bring them close together. The fracture gap can thus be eliminated and the healing This paper reports on the most recent findings obtained on properties of the SMA staples time can be reduced. manufactured with laboratory made Ni-Ti alloy. Mechanical and microstructural characteristics of the staples are found to depend on the chemical composition, manufacturing process and the time duration and temperature at which the samples are heat-treated. Experimentally produced shape memory staples are used to determine the influences of the amount of bending as well as the applied plastic strains on healing behavior of the staples.


 Key Words: Staple, SMA, Nitinol, Shape Memory, Phase Transmission, Austenite, Martensite, Bending Angle

آليازُ نايتينل حاوى دو عنصر نيكل و تيتانيم با درصد اتمى يكسان، به سبب داشت






 است [1]. خصوصيات برجسته آليازْ نايتينول مربوط به تغيير حالت فازى است است كه تبديل




 استتت عروقى، سيم راهنما، فيلتر خنف، صفده فكى و بست ' الرتويدى بدست آورده است

دياكُرام دوجرئى Ni-Ti (شكل () مـحدوده فازهاى مـختلف و از جمله TiNi















 به ساختار آستيتى است از خود

 مىنماييد. افزون بر Y Y عد اسد استخوان قسمت عظيمى از بدن را تشكيل دادهاند [7] و وظايف




 مىىردد. مزيت اسستفاده از ايميلنت حـافظهدار، بـاعث اهميت يـافتن سـاخت آن شـده است.

[^0]اولين آزمايشهاى بـالينى بر بستهاى حافظهدار در سـال ا9191 ميلادى در حِين انجام



 مقاله ستى شده است تا اثر زاويه خمشدكى (زاويه بين دو پايه) بر عملكرد بست بردسى

آزمايشها و تجهيزات ساخت قالب
بـرايى سـاخت بست و انجام آزمـايشمهاى لازم از تسمه نـايتينول سـاخته شـده طـى




 ديواره قالب از بازيابى شكل قطعه در هنگام حرارتددهى بود.



 تجمع ناخالصى مىتواند به بيش از حد تسليم افزايش يانته و سبب پـاركى تطعه در آن





 شكلى دادن به نمونه در قالبها تمبيه شد از از دقت ابعادى بالايمى برخوردار بوده و سطوح داخلى آنها حتى الامكان صـان و صيقلى تهيه كرديد.




 (اغلب rV آمبر) تنظيم كرديد. برادهبردارى در محيط خنك كنتده نفت انجام شد (شكل م).

## عمليات حرارتى

 قالب حاورى نايتينول مهار شده در داخل كوره الى با دماى






 شروع استحاله مـارتنزيتى و نيز درجه حرارت شـروع استحالله آستيتيتى افزايش مييابد.


شكّل ؟ - شكل های اسكن شده دوقطعـه نايتينول كه از بالا بها بايلين بهترتيب شكيل اوليه ، شُكل ثانويه وشك اور اوليه بازيابـى شده بعد از قراركيرى در آب C داده شده است .


درجه حرارتـهاى پـايين (0.0C



 كذارده شد.
جدول ا - مشخصات كوره عملياتى حرارتى استفاده شده براى عمليات حرارتى نمونه هاى نايتينولى.

| حداكثر دما | فركانس | أهيرإ | ولتار | توان |
| :---: | :---: | :---: | :---: | :---: |
| $171 .{ }^{\circ} \mathrm{C}$ | -. HZ | rr/v A | 「^.V | 1.KW |

وجود هـوا در مـحفظه عمليات حرارتى، ولو به مـيزان بسيار اندك سـبـ اكـي اكسيد شـدن

 درصـد تـغيير فرم یـلاستيك در هـر مـرحله كاهش يـافته و در نـتيجه تـعداد مـراحل افزايش

دمـاهاى شـروع و خاتمه تشكيل آستيت كها از جمله هـارامترهاى مـهم حـانظه دارى




 هم شد. با كمك روابط ساده رياضىى تاثير زاويه خم شدكى بر نيروى بستهاى ساى ساخته شده، اندازهكيرى و ثبت شد.

## بحث و بررسىى نتايج آزمايشهـا











 (نسبت به حالت تثبيت شده آلياذ) نيروى بزركترى مورد نياز استا است. تحقيقات بيانكر اين












جدول r - نتايج مربوطه به نمونه اول.

|  | $\mathrm{A}_{\mathbf{f}}$ |  |  | $\mathbf{A}_{\mathbf{s}}$ | خم شدكي ثانويد | خم شدى اوليه | وضعيت |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9. | ar | 40 | Fr | r9 | If | If | ( ${ }^{\circ} \mathrm{C}$ ) |
| $1 \cdot 0$ | 1.4 | 99 | 95 | 9. | 19 | 11 r | زاويه (درجه) |


|  | $\mathrm{A}_{\mathrm{f}}$ |  |  |  | $\mathbf{A}_{\mathbf{S}}$ | خم شدكى ثانويه | خم شدكى اوليه | وضعيت |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma$. | 4. | as | $\Delta$. | 10 | $f$. | if | Y4 | ( ${ }^{\circ} \mathrm{C}$ ) |
| 1.0 | 1.5 | 94 | 19 | 1. | A. | YA | 1.9 | زاويه (درجه) |

از آنجا كه دماى طبيعى بدن حدود VV درجه سانتيكراد است، افزايش بيش از حد دما
 بنابراين بستهایى با زاويه خمشدكى بيشتر بر بسته هاى با با خمشدكى كمتر ترجيح داده







 ميزان يكنواختى ريز سـاختار از طريق رهـايش ينفها و در نتيجه ايجاد سميت بستكى دارد [19]
 5\% 5 HF+5\%CH3CooH+90\%HNO ${ }_{3}$






مىشوند.

تأٔثير ناخالصىهیا و زاويه خمشدكى بر مقطع شكست قابل توجه بود. تصوير قطعات شكسته شده بر اثر اعمال كرنش بيش از حد در هنكام عمليات حرارتى و در در نتيجه تمركز




 (جدول) مويد اين مطلب است كه هرجه خمشدكى بيشتر باشد سختى بـتى كمترى خواهيم


 مرحله قبل از عمليات حرارتى نمونهاهاى اوليه بست، داراىى امميت فراوانى بوده و بايد به آن توجه شود.



| B تطعه |  | A |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{D}_{1}=\mathrm{D}_{2}\left(\mu_{\mathrm{m}}\right)$ | سختى (ويكرز) | $\mathrm{D}_{1}=\mathrm{D}_{2}\left(\mu_{\mathrm{m}}\right)$ | سختى (ويكرز) |
| $11 / \wedge$ | 919 | 10/0 | rAD/9 |
| Ir/r | 9YY/9 | rr/I | Y9, |
| $r \Delta / 9$ | V//Q | $11 / 1$ | 990/9 |
| Ir/r | art | rr/b | AVIV |

. D2, D1 -

 (زاويه بين امتداد دو پايه = =



 بدست داد.
رابـطه ا بـستكى شــعاع انــناى نـمونه را بـا لنـكر خـمشى و مـدول الاسـتيسيته بـيان


 بيشتر برای شكستكى هايى كه نياز به نيروى بيشتر فشارى ديار دارند مناسبترند. امـا افزايش


نشود.
rEI M=F.X (1)





 فرايند كرمسازى را زودتر آغاز كرده و در نهايت بيشتر خم شوند.

## نتيجهغيرى و خاتمه

افزايش مـقدار خـششدكى مـنجر به كاهش As و Af ميشود. ايـن تغغيير مـىتواند سـبـ
 كاهش آسيبهایى حرارتى در بافت استخوانى را نتيجه دهد. هرجّه مقدار خمشـدكى بيشتر



 تحت تاثير قرار مىىدهد. ميزان تغيير فرم چلاستيك نمونهها در هنكام عمليات ترموموكانيكي
 و لازم است در حد بهينه به دقت كنترل شود.
قدردانى

بـدينوسيله از آتــىى مـهندس صــادق بـدخشان به سـبب تـهيه آليـاز خـام اوليه، آتـاى

مـهندس مـحمد رضـا بـخشنده به سـبب هـمكارى در راءاندازیى و اسـتفاده از دستكاه
تـراش تـالب اسـهارك، خـانم الهام صـالحى و آقاى شـايكان ريـاضتى به سبب همكارى در
نمونهسازى و آقاى مهندس برخوردارىى برایى كمك در استفاده از كوره عمليات حرارتى قدردانى و تشكر مىشود.

1-S. T. Davies et al., (Characterization of Micromachining Processes during KrF Excimer Laser Ablation of TiNi Shape Memory Alloy Thin Sheets and Films), Smart Mater. Struct., 2002; 11: 708-714.
2- J. Uchil, et al., (Effect of Thermal Cycling on R-Phase Stability in a NiTi Shape Memory Alloy); Materials Science and Engineering A, 2002; 322: 25-28.


4 J.L. Murray, (Ni-Ti Phase Diagram), Binary Alloy Phase Diag., ASM, NY, 1991, 2.319.
5- K.N. Melton, (Ni-Ti Based Shape Memory Alloys), Engineering Aspects of Shape Memory Alloys, (Ed. T.W. Duerig, K.N. Melton, D. Stockel and C.M. Wayman), 1990, Butterworth-Heinman, London, 21-35.



8- D. Mantovani, (Shape Memory Alloys: Properties and Biomedical Application), JOM, 2000; 52 (10), 36-44.
9-Z Laster, et al., (Fixation of Forontozygomatic Fracture with a Shape-Memory Staple), British Journal of Oral and Maxillofacial Surgery, 2001; 39, 324-325. $10-\mathrm{A}$. Arndt, et al., (Effects of Fatigue and Load Variation on Metatarsal Deformation Measured In-Vivo during Barefoot Walking), Journal of Biomechanics, 2002, 35, 621-628.
11- http://www.shrinershq.org/whatsnewarch/archives01/viewpoint8-01.html, New Surgical Treatments for Scoliosis, Internet Search Engines, November 6, 2004.
r|r- ص. بدخشانراز، س. ع. ميرابوالقاسمى وس. ن. صطرنزاله، "تاثيرات متقابل ريز ساختار و عمليات نورد كرم و سرد


13- S. Badakhshan Raz and S. K. Sadrnezhaad, (Effects of VIM Frequency on Chemical Composition, Homogeneity and Microstructure of NiTi Shape Memory Alloy), Materials Science and Technology, Vol. 20, No. 5, 2004, pp 593-598.
14- Y. Li, L.S. Cui, H.B. Xu, D.Z. Yang, (Constrained Phase-Transformation of a TiNi Shape Memory Alloy), Metallurgical and Materials Transactions A, Vol. 34A, Feb. 2003, pp 219-223.
15- A. Serneels, (Shape Memory Alloy Characterization and Optimization), AXT Medical Technologies, 2002.


17- http://smart.tamu.edu/, Texas A \& M Smart Lab., October 30, 2004.
18- P.C. Su, S.K. Wu, (The Four Step Multiple Stage Transformation in
Deformed and Annealed Ti49Ni51 Shape Memory Alloy), Acta Materialia 52, 2004, pp 11171122.
19- M. Es-Souni, M. Es-Souni, H. Fischer-Brandies, (On the Properties of Two Binary NiTi Shape Memory Alloys: Effects of Surface Finish on the Corrosion Behavior and in vitro Biocompatibility), Biomaterials 22, 2002, pp 2887-2894.



[^0]:    ' - Shape Memory Staple

