Sintering of Titania Nanoceramics: Densification and Grain Growth

M. Mazaheri, Z. Razavi Hesabi, S. K. Sadrnezhaad

Introduction

To produce bulk nanoceramics from nanopowders, the accelerated grain growth at the final stage of sintering has to be abated. In doing so, one can added a second phase to pin grain boundaries while Chen and Wang [1] developed a novel technique using triple-point junctions to suppress grain growth during densification. This method modifies sintering regimes by high temperature (T1) firing followed by rapid cooling down to a lower temperature (T2) and prolonged soaking of the samples at T2. A smaller grain size at the end of the first step, thus, consequences a higher density of unstable pores that pins-off the grain boundaries from further advancement [2]. Several researchers have successfully applied the two-step sintering procedure to exhaust grain growth of the nanoceramic specimens. A few others have used transformation assisted sintering [3] with the same purpose. No one has, however, designed any system of significant grain-growth suppression based on simultaneous two-step sintering and phase-transformation compaction [4]. In the present study, different regimes are envisaged to reveal the role of concomitant phase transformation/two-step sintering procedure on grain growth and microstructural evolution of the titania nanoceramics benefited from anatase to rutile phase transformation.

Experimental Procedure

Results Normal Sintering

%

100 2000 80 1500 G % 1000 SIZ 500 20 700 800 900 1000 500 600 Temperature, °C

Structural evolution of normally sintered TiO₂ nanopowder.

Conventional Two-Step Sintering

Fractional density, rutile content and grain size of sintered nanocrystalline TiO₂ powder versus holding time under conventional two-step sintering.

Two-Step Sintering Assisted by a Phase Transformation

Effect of phase transformation on fractional density and grain size of sintered nanocrystalline TiO₂ powder during densification in second step.

Effect of phase transformation on the "Sintering Path" of TiO₂ nanopowder sintered under normal sintering, conventional two-step sintering and transformation assisted two-step sintering.

, 1111

[1] I. -W. Chen, X. -H. Wang, Nature 404 (2000) 168.

[2] M. Mazaheri, A.M. Zahedi, S.K. Sadrnezhaad, J. Am. Ceram. Soc. 91 (2008) 56. [3] K. -N. P. Kumar, K. Keizer, A. J. Burggraaf, T. Okubo, H. Nagamoto, S. Morooka, Nature 358 (1992) 48.

[4] M. Mazaheri, Z. Razavi Hesabi, S. K. Sadrnezhaad, Scripta Materialia, 2008, in press.

Conclusion

A remarkable suppression of grain growth was achieved by taking the benefit of two-step sintering. In doing so, the grain size was reduced from 2 µm down to ~ 250 nm. While simultaneous phase transformation and two-step sintering led to formation of a nanostructure with a grain size of 100 nm.

