

SLM Additive Manufacturing of NiTi Porous Implants: A Review of Constitutive Models, Finite Element Simulations, Manufacturing, Heat Treatment, Mechanical, and Biomedical Studies

Mojtaba Jalali¹ · Kaivan Mohammadi¹ · Mohammad R. Movahhedy¹ · Farzad Karimi² · Sayed Khatiboleslam Sadrnezhaad² · Stanislav V. Chernyshikhin³ · Igor V. Shishkovsky³

Received: 2 December 2022 / Accepted: 19 January 2023 © The Author(s) under exclusive licence to The Korean Institute of Metals and Materials 2023

Abstract

Nitinol shape memory alloy is a biocompatible material that is suitable for biomedical applications due to its superelasticity, shape memory effect, good corrosion and fatigue resistance, and sound damping properties. With the selective laser melting (SLM) additive manufacturing process, it is possible to produce customized NiTi implants in the form of porous metamaterials with complex geometries. This paper presents a review of modeling, production, and application of NiTi implants. First, the fundamentals of shape memory alloys and the SLM process are summarized. Then, the effects of the SLM process on the transformation temperatures and the impacts of Heat treatments on these temperatures for additive manufactured parts are discussed. Next, a review of recent experimental works on the mechanical properties of NiTi lattice structures are presented regarding the required functional properties of orthopedic implants. Also, in vitro and in vivo biological studies of NiTi implants are reviewed. Finally, constitutive models developed for SMAs are presented and finite element simulations of NiTi lattice structures are discussed.

Keywords NiTi bone implant \cdot SLM additive manufacturing \cdot Heat treatment \cdot Biomedical studies \cdot Constitutive models \cdot Finite element simulation

		Abbreviations	
		SLM	Selective Laser Melting
\bowtie	Kaivan Mohammadi	SMA	Shape Memory Alloy
	kaivan.mohammadi@sharif.edu	SME	Shape Memory Effect
	Mohammad R. Movahhedy movahhed@sharif.edu	PE	Pseudoelastic
		AM	Additive Manufacturing
	Mojtaba Jalali	CAD	Computer-Aided Design
	mojtaba.jalali@mech.sharif.edu	LPBF	Laser Powder Bed Fusion
	Farzad Karimi	TTs	Transformation Temperatures
	farzad.karimi@sharif.edu	OWSME	One-Way Shape Memory Effect
	Sayed Khatiboleslam Sadrnezhaad sadrnezh@sharif.edu	TWSME	Two-Way Shape Memory Effect
		DSC	Differential Scanning Calorimetry
	Stanislav V. Chernyshikhin stanislav.chernyshikhin@skoltech.ru	ICP-AES	Inductively Coupled Plasma Atomic Emission
			Spectroscopy
	Igor V. Shishkovsky i.shishkovsky@skoltech.ru	VED	Volumetric Energy Density
		TPMS	Triply Periodic Minimal Surfaces
1	Department of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9567, Iran	MVF	Martensite Volume Fraction
		TRIP	Transformation-Induced Plasticity
2	Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11365-9466, Iran	HTSMA	High-Temperature Shape Memory Alloy
		FEM	Finite Element Method
3	Center for Design, Manufacturing and Materials, Skolkovo Institute of Science and Technology, Moscow, Russia 121205	UMAT	User-defined Material
		FEA	Finite Element Analysis